Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(1): e1011776, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38261584

ABSTRACT

INTRODUCTION: B-cells are essential components of the immune system that neutralize infectious agents through the generation of antigen-specific antibodies and through the phagocytic functions of naïve and memory B-cells. However, the B-cell response can become compromised by a variety of conditions that alter the overall inflammatory milieu, be that due to substantial, acute insults as seen in sepsis, or due to those that produce low-level, smoldering background inflammation such as diabetes, obesity, or advanced age. This B-cell dysfunction, mediated by the inflammatory cytokines Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α), increases the susceptibility of late-stage sepsis patients to nosocomial infections and increases the incidence or severity of recurrent infections, such as SARS-CoV-2, in those with chronic conditions. We propose that modeling B-cell dynamics can aid the investigation of their responses to different levels and patterns of systemic inflammation. METHODS: The B-cell Immunity Agent-based Model (BCIABM) was developed by integrating knowledge regarding naïve B-cells, short-lived plasma cells, long-lived plasma cells, memory B-cells, and regulatory B-cells, along with their various differentiation pathways and cytokines/mediators. The BCIABM was calibrated to reflect physiologic behaviors in response to: 1) mild antigen stimuli expected to result in immune sensitization through the generation of effective immune memory, and 2) severe antigen challenges representing the acute substantial inflammation seen during sepsis, previously documented in studies on B-cell behavior in septic patients. Once calibrated, the BCIABM was used to simulate the B-cell response to repeat antigen stimuli during states of low, chronic background inflammation, implemented as low background levels of IL-6 and TNF-α often seen in patients with conditions such as diabetes, obesity, or advanced age. The levels of immune responsiveness were evaluated and validated by comparing to a Veteran's Administration (VA) patient cohort with COVID-19 infection known to have a higher incidence of such comorbidities. RESULTS: The BCIABM was successfully able to reproduce the expected appropriate development of immune memory to mild antigen exposure, as well as the immunoparalysis seen in septic patients. Simulation experiments then revealed significantly decreased B-cell responsiveness as levels of background chronic inflammation increased, reproducing the different COVID-19 infection data seen in a VA population. CONCLUSION: The BCIABM proved useful in dynamically representing known mechanisms of B-cell function and reproduced immune memory responses across a range of different antigen exposures and inflammatory statuses. These results elucidate previous studies demonstrating a similar negative correlation between the B-cell response and background inflammation by positing an established and conserved mechanism that explains B-cell dysfunction across a wide range of phenotypic presentations.


Subject(s)
COVID-19 , Diabetes Mellitus , Sepsis , Humans , Interleukin-6 , Tumor Necrosis Factor-alpha , Cytokines , Inflammation , Obesity
2.
Surg Infect (Larchmt) ; 24(8): 725-733, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37824803

ABSTRACT

Background: There is increasing recognition of extensive crosstalk between programmed cell death pathways (PCDPs), such as apoptosis, pyroptosis, and necroptosis, resulting in a highly redundant system responsive to a breadth of potential pathogens. However, because pyroptosis and necroptosis propagate inflammation, these redundancies also present challenges for therapeutic control of dysregulated hyperinflammation seen in cytokine storm (CS) generated organ dysfunction. Hypothesis: We hypothesize that the conversion of existing knowledge regarding apoptosis, pyroptosis, and necroptosis into a computational model can enhance our understanding of the crosstalk between PCDPs via simulation experiments of microbe interactions and experimental interventions. Materials and Methods: Literature regarding apoptosis, pyroptosis, and necroptosis was reviewed and transposed into an agent-based model, the programmed cell death agent-based model (PCDABM). Computational experiments were performed to simulate the activation of various PCDPs as seen by differing microbes, specifically: influenza A virus (IAV), enteropathic Escherichia coli (EPEC), and Salmonella enterica (SE). The potential protective value of PCDP crosstalk was evaluated by silencing either pyroptosis, necroptosis, or both. Computational experiments were also performed simulating the effect of potential therapies blocking tumor necrosis factor (TNF) and interleukin (IL)-1. Results: The PCDABM was implemented in the agent-based modeling toolkit NetLogo. Computational experiments of infection with IAV, EPEC, and SE reproduced cross-activation of PCDPs with effective microbial clearance. Simulations of anti-TNF and anti-IL-1 did not reduce the aggregated amount of inflammation-generated system damage, the surrogate for CS-generated tissue damage. Conclusions: Redundancies have evolved in host PCDPs to maintain protection against a wide range of pathogens. However, these redundancies also challenge attempts at dampening the pathogenic hyperinflammatory state of CS using therapeutic immunomodulation. Integrative simulation models such as the PCDABM can aid in identifying potentially targetable inflection points to mitigate CS while maintaining effective host defense.


Subject(s)
Cytokine Release Syndrome , Tumor Necrosis Factor Inhibitors , Humans , Apoptosis , Pyroptosis , Inflammation
3.
Surg Open Sci ; 16: 77-81, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37818461

ABSTRACT

Background: Though governed by the same underlying biology, the differential physiology of children causes the temporal evolution from health to a septic/diseased state to follow trajectories that are distinct from adult cases. As pediatric sepsis data sets are less readily available than for adult sepsis, we aim to leverage this shared underlying biology by normalizing pediatric physiological data such that it would be directly comparable to adult data, and then develop machine-learning (ML) based classifiers to predict the onset of sepsis in the pediatric population. We then externally validated the classifiers in an independent adult dataset. Methods: Vital signs and laboratory observables were obtained from the Pediatric Intensive Care (PIC) database. These data elements were normalized for age and placed on a continuous scale, termed the Continuous Age-Normalized SOFA (CAN-SOFA) score. The XGBoost algorithm was used to classify pediatric patients that are septic. We tested the trained model using adult data from the MIMIC-IV database. Results: On the pediatric population, the sepsis classifier has an accuracy of 0.84 and an F1-Score of 0.867. On the adult population, the sepsis classifier has an accuracy of 0.80 and an F1-score of 0.88; when tested on the adult population, the model showed similar performance degradation ("data drift") as in the pediatric population. Conclusions: In this work, we demonstrate that, using a straightforward age-normalization method, EHR's can be generalizable compared (at least in the context of sepsis) between the pediatric and adult populations.

4.
J Surg Res ; 291: 683-690, 2023 11.
Article in English | MEDLINE | ID: mdl-37562230

ABSTRACT

INTRODUCTION: The clinical characterization of the functional status of active wounds in terms of their driving cellular and molecular biology remains a considerable challenge that currently requires excision via a tissue biopsy. In this pilot study, we use convolutional Siamese neural network (SNN) architecture to predict the functional state of a wound using digital photographs of wounds in a canine model of volumetric muscle loss (VML). METHODS: Digital images of VML injuries and tissue biopsies were obtained in a standardized fashion from an established canine model of VML. Gene expression profiles for each biopsy site were obtained using RNA sequencing. These profiles were converted to functional profiles by a manual review of validated gene ontology databases in which we determined a hierarchical representation of gene functions based on functional specificity. An SNN was trained to regress functional profile expression values, informed by an image segment showing the surface of a small tissue biopsy. RESULTS: The SNN was able to predict the functional expression of a range of functions based with error ranging from ∼5% to ∼30%, with functions that are most closely associated with the early state of wound healing to be those best-predicted. CONCLUSIONS: These initial results suggest promise for further research regarding this novel use of machine learning regression on medical images. The regression of functional profiles, as opposed to specific genes, both addresses the challenge of genetic redundancy and gives a deeper insight into the mechanistic configuration of a region of tissue in wounds.


Subject(s)
Artificial Intelligence , Wound Healing , Animals , Dogs , Pilot Projects , Neural Networks, Computer , Biopsy , Muscle, Skeletal/pathology
5.
J Med Internet Res ; 25: e41233, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37023420

ABSTRACT

BACKGROUND: As trachoma is eliminated, skilled field graders become less adept at correctly identifying active disease (trachomatous inflammation-follicular [TF]). Deciding if trachoma has been eliminated from a district or if treatment strategies need to be continued or reinstated is of critical public health importance. Telemedicine solutions require both connectivity, which can be poor in the resource-limited regions of the world in which trachoma occurs, and accurate grading of the images. OBJECTIVE: Our purpose was to develop and validate a cloud-based "virtual reading center" (VRC) model using crowdsourcing for image interpretation. METHODS: The Amazon Mechanical Turk (AMT) platform was used to recruit lay graders to interpret 2299 gradable images from a prior field trial of a smartphone-based camera system. Each image received 7 grades for US $0.05 per grade in this VRC. The resultant data set was divided into training and test sets to internally validate the VRC. In the training set, crowdsourcing scores were summed, and the optimal raw score cutoff was chosen to optimize kappa agreement and the resulting prevalence of TF. The best method was then applied to the test set, and the sensitivity, specificity, kappa, and TF prevalence were calculated. RESULTS: In this trial, over 16,000 grades were rendered in just over 60 minutes for US $1098 including AMT fees. After choosing an AMT raw score cut point to optimize kappa near the World Health Organization (WHO)-endorsed level of 0.7 (with a simulated 40% prevalence TF), crowdsourcing was 95% sensitive and 87% specific for TF in the training set with a kappa of 0.797. All 196 crowdsourced-positive images received a skilled overread to mimic a tiered reading center and specificity improved to 99%, while sensitivity remained above 78%. Kappa for the entire sample improved from 0.162 to 0.685 with overreads, and the skilled grader burden was reduced by over 80%. This tiered VRC model was then applied to the test set and produced a sensitivity of 99% and a specificity of 76% with a kappa of 0.775 in the entire set. The prevalence estimated by the VRC was 2.70% (95% CI 1.84%-3.80%) compared to the ground truth prevalence of 2.87% (95% CI 1.98%-4.01%). CONCLUSIONS: A VRC model using crowdsourcing as a first pass with skilled grading of positive images was able to identify TF rapidly and accurately in a low prevalence setting. The findings from this study support further validation of a VRC and crowdsourcing for image grading and estimation of trachoma prevalence from field-acquired images, although further prospective field testing is required to determine if diagnostic characteristics are acceptable in real-world surveys with a low prevalence of the disease.


Subject(s)
Crowdsourcing , Telemedicine , Trachoma , Humans , Crowdsourcing/methods , Photography/methods , Prevalence , Telemedicine/methods , Trachoma/diagnosis
6.
PLoS Negl Trop Dis ; 16(12): e0010943, 2022 12.
Article in English | MEDLINE | ID: mdl-36477293

ABSTRACT

BACKGROUND: Though significant progress in disease elimination has been made over the past decades, trachoma is the leading infectious cause of blindness globally. Further efforts in trachoma elimination are paradoxically being limited by the relative rarity of the disease, which makes clinical training for monitoring surveys difficult. In this work, we evaluate the plausibility of an Artificial Intelligence model to augment or replace human image graders in the evaluation/diagnosis of trachomatous inflammation-follicular (TF). METHODS: We utilized a dataset consisting of 2300 images with a 5% positivity rate for TF. We developed classifiers by implementing two state-of-the-art Convolutional Neural Network architectures, ResNet101 and VGG16, and applying a suite of data augmentation/oversampling techniques to the positive images. We then augmented our data set with additional images from independent research groups and evaluated performance. RESULTS: Models performed well in minimizing the number of false negatives, given the constraint of the low numbers of images in which TF was present. The best performing models achieved a sensitivity of 95% and positive predictive value of 50-70% while reducing the number images requiring skilled grading by 66-75%. Basic oversampling and data augmentation techniques were most successful at improving model performance, while techniques that are grounded in clinical experience, such as highlighting follicles, were less successful. DISCUSSION: The developed models perform well and significantly reduce the burden on graders by minimizing the number of false negative identifications. Further improvements in model skill will benefit from data sets with more TF as well as a range in image quality and image capture techniques used. While these models approach/meet the community-accepted standard for skilled field graders (i.e., Cohen's Kappa >0.7), they are insufficient to be deployed independently/clinically at this time; rather, they can be utilized to significantly reduce the burden on skilled image graders.


Subject(s)
Trachoma , Humans , Trachoma/diagnosis , Artificial Intelligence , Machine Learning , Neural Networks, Computer , Predictive Value of Tests
7.
J Surg Res ; 270: 547-554, 2022 02.
Article in English | MEDLINE | ID: mdl-34826690

ABSTRACT

BACKGROUND: The clinical characterization of the biological status of complex wounds remains a considerable challenge. Digital photography provides a non-invasive means of obtaining wound information and is currently employed to assess wounds qualitatively. Advances in machine learning (ML) image processing provide a means of identifying "hidden" features in pictures. This pilot study trains a convolutional neural network (CNN) to predict gene expression based on digital photographs of wounds in a canine model of volumetric muscle loss (VML). MATERIALS AND METHODS: Images of volumetric muscle loss injuries and tissue biopsies were obtained in a canine model of VML. A CNN was trained to regress gene expression values as a function of the extracted image segment (color and spatial distribution). Performance of the CNN was assessed in a held-back test set of images using Mean Absolute Percentage Error (MAPE). RESULTS: The CNN was able to predict the gene expression of certain genes based on digital images, with a MAPE ranging from ∼10% to ∼30%, indicating the presence and identification of distinct, and identifiable patterns in gene expression throughout the wound. CONCLUSIONS: These initial results suggest promise for further research regarding this novel use of ML regression on medical images. Specifically, the use of CNNs to determine the mechanistic biological state of a VML wound could aid both the design of future mechanistic interventions and the design of trials to test those therapies. Future work will expand the CNN training and/or test set, with potential expansion to predicting functional gene modules.


Subject(s)
Image Processing, Computer-Assisted , Neural Networks, Computer , Animals , Biopsy , Dogs , Gene Expression , Image Processing, Computer-Assisted/methods , Pilot Projects
8.
Front Physiol ; 12: 716434, 2021.
Article in English | MEDLINE | ID: mdl-34721057

ABSTRACT

Introduction: Disease states are being characterized at finer and finer levels of resolution via biomarker or gene expression profiles, while at the same time. Machine learning (ML) is increasingly used to analyze and potentially classify or predict the behavior of biological systems based on such characterization. As ML applications are extremely data-intensive, given the relative sparsity of biomedical data sets ML training of artificial neural networks (ANNs) often require the use of synthetic training data. Agent-based models (ABMs) that incorporate known biological mechanisms and their associated stochastic properties are a potential means of generating synthetic data. Herein we present an example of ML used to train an artificial neural network (ANN) as a surrogate system used to predict the time evolution of an ABM focusing on the clinical condition of sepsis. Methods: The disease trajectories for clinical sepsis, in terms of temporal cytokine and phenotypic dynamics, can be interpreted as a random dynamical system. The Innate Immune Response Agent-based Model (IIRABM) is a well-established model that utilizes known cellular and molecular rules to simulate disease trajectories corresponding to clinical sepsis. We have utilized two distinct neural network architectures, Long Short-Term Memory and Multi-Layer Perceptron, to take a time sequence of five measurements of eleven IIRABM simulated serum cytokine concentrations as input and to return both the future cytokine trajectories as well as an aggregate metric representing the patient's state of health. Results: The ANNs predicted model trajectories with the expected amount of error, due to stochasticity in the simulation, and recognizing that the mapping from a specific cytokine profile to a state-of-health is not unique. The Multi-Layer Perceptron neural network, generated predictions with a more accurate forecasted trajectory cone. Discussion: This work serves as a proof-of-concept for the use of ANNs to predict disease progression in sepsis as represented by an ABM. The findings demonstrate that multicellular systems with intrinsic stochasticity can be approximated with an ANN, but that forecasting a specific trajectory of the system requires sequential updating of the system state to provide a rolling forecast horizon.

9.
Methods Mol Biol ; 2321: 231-257, 2021.
Article in English | MEDLINE | ID: mdl-34048021

ABSTRACT

Despite nearly 50 years of research there currently remains no mediator-directed therapy approved for the treatment of sepsis. The failure to effectively translate the copious mechanistic knowledge regarding systemic inflammation to effective therapies is a dramatic example of the translational dilemma. Dynamic computational modeling has been proposed as a vital means of integrating community-wide knowledge into an investigatory framework that allows the application of engineering-like principles to the problem of sepsis. Agent-based modeling is a computational modeling method that has been used to address some of the fundamental issues facing the sepsis research community. This chapter will introduce the rationale to augment traditional research practices with agent-based modeling, describe the basic steps in the construction and use of agent-based models, and provide examples of how the use of agent-based modeling can provide an investigatory pathway to solving the challenge of sepsis.


Subject(s)
Inflammation/metabolism , Sepsis/metabolism , Signal Transduction/physiology , Computer Simulation , Humans , Systems Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...